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Abstract: With the rapid development of machine learning, the demand for high-efficient computing becomes more and more
urgent. To break the bottleneck of the traditional Von Neumann architecture, computing-in-memory (CIM) has attracted increas-
ing attention in recent years.  In this work,  to provide a feasible CIM solution for the large-scale neural  networks (NN) requiring
continuous weight updating in online training, a flash-based computing-in-memory with high endurance (109 cycles) and ultra-
fast  programming  speed  is  investigated.  On  the  one  hand,  the  proposed  programming  scheme  of  channel  hot  electron  injec-
tion  (CHEI)  and  hot  hole  injection  (HHI)  demonstrate  high  linearity,  symmetric  potentiation,  and  a  depression  process,  which
help to improve the training speed and accuracy. On the other hand, the low-damage programming scheme and memory win-
dow  (MW)  optimizations  can  suppress  cell  degradation  effectively  with  improved  computing  accuracy.  Even  after  109 cycles,
the leakage current (Ioff) of cells remains sub-10pA, ensuring the large-scale computing ability of memory. Further characteriza-
tions are done on read disturb to demonstrate its robust reliabilities. By processing CIFAR-10 tasks, it is evident that ~90% accu-
racy can be achieved after 109 cycles in both ResNet50 and VGG16 NN. Our results suggest that flash-based CIM has great poten-
tial  to  overcome  the  limitations  of  traditional  Von  Neumann  architectures  and  enable  high-performance  NN  online  training,
which pave the way for further development of artificial intelligence (AI) accelerators.
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1.  Introduction

To  address  the  concerns  from  frequent  data-shuttling-
related energy consumption and latency, computing-in-mem-
ory  (CIM)  applications  in  neural  networks  (NNs)  have
attracted much attention. Some previous works have demon-
strated  CIM-based  NN  inference[1−3],  but  it  is  still  challenging
to  implement  online  training  due  to  strict  requirements  on
both performance (speed, power,  array size,  etc.)  and reliabil-
ity  (endurance,  stabilities,  etc.).  Though  NNs  using  emerging
memories,  such  as  random-access  memory  (RRAM)[4] and
phase  change  memory  (PCM)[5],  and  have  demonstrated
great  performance  on  CIM  inference,  memory  performance
for online training applications needs to be further improved.
Due  to  excellent  electrical  performance  such  as  endurance
and  programming  speed,  RRAM  has  emerged  as  one  of  the
most  promising  candidates  for  the  synapse  of  the  NN  online
training[6, 7],  however,  the reliability  and non-linearity  in large
arrays  still  need  further  optimizations.  Flash-based  CIM  pro-
vides  a  more  feasible  and  reliable  solution  because  of  its

mature  technology,  ultra-high  bit  density,  and  capabilities  to
construct large arrays for matrix operations.  So far,  CIM archi-
tectures  can  be  applied  in  NNs  with  software-combined
offline  training,  while  strict  requirements  have  arisen  for
endurance and programming speed for NN online training in
CIM  hardware.  Thus,  for  further  exploration  of  flash-based
CIM  as  online  training  NN  accelerators,  it  is  strongly  required
to  break  the  obstacles  of  endurance  and  the  speed  of  flash
cells. 

2.  Background
 

2.1.  Flash-based CIM architecture

Fig. 1 illustrates the architecture of flash memory and the
adopted CIM scheme in this work. The matrix-vector-multiplica-
tion  (MVM)  is  implemented  through  a  matrix  represented  by
Id which can be tuned by Vth,  and vectors represented by the
pulse  time  of Vg.  Firstly,  the  matrix  and  vectors  are  pre-pro-
cessed  to  the  corresponding  electrical  parameters  of  the
device  array.  The  matrix  needs  to  be  stored  in  the  array  and
the  vectors  are  transferred  to  the  pulse  time.  Then,  the
amount  of  charge  can  represent  the  output  of  MVM,  which
can be described as Q = I ∙ t.  The great  reliability  and mature
technology  of  flash  memory  ensure  the  computing  accuracy
of large-scale MVM. 
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2.2.  Flash operation by CHEI and HHI

The  CHEI  programming  scheme  and  the  HHI  erasing
scheme  are  adopted  in  this  work.  The  separated  word  line
(WL) and bit  line (BL)  of  NOR flash allow single-cell  selectivity
and  individual  programming  operations  with  CHEI.  Different
from  the  traditional  Fowler-Nordheim  (FN)  tunneling  opera-
tion,  the  HHI  can  tune  cells  individually,  benefitting  from  the
independent  WL  and  BL[8].  In  addition,  the  applied  voltage  is
much lower than FN tunneling. The scheme and energy band
diagram  of  the  CHEI  and  the  HHI  are  shown  in Fig.  2.  The
model  of  CHEI  can  be  described  as  that  the  energetic  elec-
trons  gain  energy  primarily  from  the  lateral  channel  field  (or
the  applied  drain  bias Vd)  to  overcome  the  Si−SiO2 potential
barrier,  injecting  into  the  floating  gate  layer  to  increase Vth.
The HHI scheme utilizes the positive voltage on BL and nega-
tive voltage on WL, and the band-to-band tunneling (BTBT) is
happening at the cell drain junction. Meanwhile, electrons gen-
erated  by  this  process  are  gathered  by  the  drain  contact.
With the large bias of the p-well and drain junction, the holes
that flow towards the p-well  can be injected into the floating
gate under the high negative voltage of the gate. In this pro-
cess, holes injected into the floating gate can recombine with
electrons originally stored in the floating gate, thereby reduc-
ing the cell Vth. 

2.3.  ResNet50 and VGG16 neural networks

We choose the representative ResNet50 and VGG16 neu-
ral  networks  to  test  the  performance  of  the  proposed  online
training  architecture.  The  system  frame  diagram  of  both  two
architectures  is  shown  in Fig.  3.  ResNet50  is  a  convolutional
neural  network  architecture  that  was  proposed  to  simplify
the training of deeper networks and improve their speed and
accuracy.  The  key  innovation  is  the  introduction  of  residual
blocks,  which  allow  the  network  to  learn  identity  mappings
and  avoid  the  degradation  problem  caused  by  adding  more

×

layers. ResNet50 is representative of ResNet and has achieved
a  state-of-the-art  performance  on  various  image  recognition
tasks.  On the other hand,  VGG16 is  another popular  convolu-
tional neural network architecture that also focuses on increas-
ing  network  depth.  One  of  its  key  improvements  over  previ-
ous  architectures  such  as  AlexNet  is  the  use  of  smaller  3  3
convolutional filters instead of larger ones. The VGG16 model
has  achieved  widespread  adoption  in  multiple  domains  due
to its ability to enable better approximation of complex func-
tions  while  maintaining  a  manageable  number  of  parame-
ters.  It  has  also  been  shown  to  achieve  high  accuracy  on
image recognition tasks. 

3.  Reliability analysis and discussion

The  55-nm  NOR  flash  array  is  used  to  construct  the  CIM
matrix  for  large-scale  online  training  NNs,  wherein  the  CHEI
and  the  HHI[9] are  adopted  for  ultra-fast  threshold  voltage
(Vth) tuning in cells for weight updating (Fig. 4). In the conven-
tional operation scheme towards storage usages, the MW has
to  be  large  to  make  the  error  bits  as  low  as  possible.  While
for  NN  applications  with  a  stronger  tolerance  to  noise,  we
can  optimize  the  MW  to  achieve  faster  operation  speed  and
suppress the cell degradation with fewer pulses and lower pro-
gramming biases.

Rather  than  the  7.7  V  substrate  operation  voltage  and
−8 to −9.5 V gate operation voltage used in FN tunneling oper-
ation,  the  0  V  substrate  operation  voltage  of  the  HHI  makes
the design of the peripheral circuit much simpler. More impor-
tantly,  it  is  found  that  as  fast  as  10  ns  (pulse  width)  opera-
tions  can  be  adopted  for Vth tuning.  The  HHI  can  achieve
104 times  faster  erasing  than  FN  tunneling  as  shown  in
Fig.  4(b).  The fast  programming speed is  essential  for  the fre-
quently  fast  weight  updating  of  NN  online  training.  Further-
more,  it  is  necessary  to  ensure  the  linearity  of  the  conduc-
tance–pulse curve[10] for online training applications. The pro-

 

Fig. 1. (Color online) Schematics of flash-based CIM architecture. The pulse time of Vg and the threshold voltage is individually mapped as vector
and matrix, then the amount of charge can represent the result of MVM.

 

(a) (b)

Fig. 2. (Color online) (a) Schematic of adopted CHEI and HHI programming scheme. (b) The energy band diagram of CHEI and HHI programming
scheme.
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posed  CHEI  and  HHI  combined  method  shows  high  linearity
in Fig.  4(c),  as  well  as  the  symmetric  potential  and  depres-
sion process during the short programming of 10 ns and eras-
ing time.

In addition to adjustments in the programming and eras-
ing scheme, the trade-off between MW and endurance is inves-
tigated  in  this  work  for  CIM  applications,  especially  for  NN
online training.  Impressively,  by adopting the CHEI–HHI com-
bined programming scheme and lowering the MW, flash cells
can  realize  record  high  endurance,  exceeding  109 cycles  in
0.2−0.5  V  MW  operations,  which  is  enough  for  1-bit/cell  and

even 2-bit/cell  operations in CIM applications.  In Fig.  5(a),  the
I–V curves  demonstrate  that  even  after  109 cycles,  the  cur-
rent  is  quite  stable  for  computing. Fig.  5(b)  shows  the  bal-
ance  between  the  MW  and  endurance.  Although  the  test
results  show  that  the  endurance  decreases  with  the  incre-
ment of the MW, it should be noted that even 4 bit/cell opera-
tions (1 V MW) can achieve 107 endurance by adopting the pro-
posed  programming  scheme,  which  is  enough  for  various
large-scale NNs. However, many devices including flash mem-
ory exhibit state-dependent programming variation, and pro-
gramming variations in  multibit  flash memories  are generally

 

(a)

(b)

Fig. 3. (Color online) The architecture of (a) ResNet 50 and (b) VGG 16 convolutional neural network.

 

(a) (b) (c)

Fig. 4. (Color online) (a) The proposed scheme to improve both endurance and speed by optimizing the operation scheme for NN online train-
ing. (b) The comparison of the Vth tuning speed of FN tunneling and the HHI. (c) The high linearity and symmetric potentiation and depression pro-
cess using the CHEI and the HHI combined methods.

 

(a) (b) (c) (d)

Fig. 5. (Color online) (a) The I–V curves of the programmed/erased state before and after 109 cycles. (b) Enhancements of endurance at lower MW
show the trade-off between MW and endurance. (c) SS value and (d) Ioff of different MW and cycles compared with the traditional programming
scheme, wherein each box contains 15 different memory cells.
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more  state-independent  while  also  suffering  from  additional
nonlinear  behaviors[11].  Therefore,  compared  with  the  larger
MW  with  multi-level-cell  (MLC)  operation  mode,  the  small
MW  may  not  cause  degradation  in  the  prediction  accuracy
when  the  MW  is  enough  for  one-bit  programming  precisely
in the SLC operation mode.

After  cycling,  the  subthreshold  swing  (SS)  and  the  leak-
age current (Ioff) are also tested to avoid deteriorated comput-
ing  accuracy  as  the  result  of  on/off  ratio  degradation.
Although  both  the  traditional  FN  tunneling  and  the  HHI  will
increase the SS value, the increment of SS is conducive to pre-
cise  device  programming  for  more  precise  weight  updating
of  the  CIM  application  instead.  This  is  because  larger  SS  val-
ues  result  in  larger  memory  windows  between  adjacent  pro-
gramming  states.  Therefore,  only  the  degradation  of  the Ioff

will  significantly  impact  the  computational  performance  to
the deteriorated on/off ratio. However, different from FN tun-
neling  erasing  with  serious Ioff degradation, Ioff can  be  sup-
pressed  to  sub-10  pA  after  109 cycles  by  the  HHI  erasing
(Fig.  5(d)).  This  can  be  understood  because  FN  tunneling
causes  serious  degradation  to  gate  dielectrics  and  the  inter-
face, while the HHI mainly degrades the interface[12].

This  can  be  observed  from  the  statistical  data  of  SS  and
Ioff in Fig.  5.  After  109 cycles,  the  subthreshold  region  of  cells
with  larger  SS  and  sub-10pA Ioff allows  a  larger Vth tuning
range  and  better  immunity  to  the  fluctuations,  which  can  be
utilized to construct efficient large-scale online training NNs. 

4.  Performance in neural network

The  comparison  is  analyzed  between  different  program-
ming schemes.  Aiming at  CIM applications,  the test  results  of
55  nm  flash  memory  in Fig.  6(a)  show  that  the  traditional  FN
tunneling  scheme  is  much  slower  and  requires  a  higher  tun-
ing  voltage  as  compared  to  the  proposed  HHI  scheme.
Besides  this,  the Ioff after  P/E  cycles  increase  significantly,
which  can  have  a  considerable  impact  on  the  on/off  ratio  of

the device, ultimately affecting the CIM accuracy.
The  read  disturb  (RD)  characteristic  is  then  tested  to  evi-

dence robust reliabilities in flash cells. Well-controlled RD last-
ing  for  1  ks  can  be  observed  in Fig.  6(b).  After  109 cycles,
though  the  read  current  decreases  to  nA-level  as  a  result  of
the  increment  of  SS,  the  RD  is  quite  stable.  The  long-term
read disturbance characteristics have an ignorance impact on
computing accuracy with cells'  current fluctuations for online
training  of  NN.  The  short-term  currency  fluctuations  will  not
degrade the accuracy of neural network calculations.

To  further  evaluate  the  performance  of  the  compact
flash-based NN system, the chip tester is designed to character-
ize  flash-based  CIMs  and  can  support  fast  programming,  as
well  as  operations  of  matrix-vector  multiplication  (MVM).  To
demonstrate  the  feasibility  of  flash  CIM,  standard  the
ResNet50  and  VGG16  convolutional  neural  network  (CNN)  is
implemented for  image classification in  the  CIFAR-10  dataset
with 10 object  classes,  as  shown in Fig.  6(c).  With the simula-
tions of different NNs, the high accuracy of the proposed sys-
tem is  demonstrated.  It  should  be  noted that  short-term RDs
are  an  important  impact  factor  because  online  training
requires  continuous  ultra-fast  weight  updating.  Impressively,
over  90%  recognition  accuracy  has  been  achieved  after  109

cycles  with  the  proposed  flash  CIM.  The  comparisons  with
other related works are summarized in Table 1. The results indi-
cate  that  the  proposed  programming  scheme  for  NOR  flash
demonstrates superior  characteristics  in  terms of  on/off  ratio,
programming  speed,  endurance,  and  DR  compared  to  other
emerging memories. 

5.  Conclusion

This  work  shows  the  potential  of  flash-based  computa-
tional-in-memory  (CIM)  devices  to  achieve  high  endurance
(109)  and  ultra-fast  programming  speed  (10  ns)  through  the
implementation  of  the  CHEI–HHI  programming  scheme  and
MW optimizations. Utilizing this optimized operation scheme,

 

(a) (b) (c)

Fig. 6. (Color online) (a) Comparisons between the proposed scheme and the traditional scheme. (b) Read disturbance of different states after
109 cycles. (c) Applications in CIFAR-10 using ResNet50 and Vgg16. Even after 109 cycles, ~90% accuracy can be achieved for the CIFAR-10 task.

 

Table 1.   The benchmark of this work and various non-volatile CIM devices.

Ref Cell type On/off ratio Pgm.speed Endurance DR (s)

[8] PCM 104 – 108 106

[13] RRAM 103 1 μs – 104

[14] FeFET 105 300 ns 105 104

[15] 3D flash 105 – 105 105

[16] Flash 102 10 μs 105 –
This work (optimized operation) Flash 106 (before cycles) 10 ns 109 105
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a  compact  flash-based  NN  online  training  CIM  system  is  pro-
posed.  Our  results  demonstrate  that  even  after  109 cycles,  a
high  accuracy  rate  of  approximately  90%  can  be  attained
when  performing  CIFAR-10  tasks.  Further  characterizations
are done on read disturb to evidence robust reliabilities, high-
lighting  its  significant  potential  for  online  training  of  actual
NN tasks.  This  work provides  a  comprehensive assessment  of
a  flash-based  online  training  network  with  potential  implica-
tions for the advancement of AI accelerators. 

Acknowledgements

This  work  was  supported  by  the  National  Natural  Sci-
ence  Foundation  of  China  (Nos.  62034006,  92264201,  and
91964105),  the  Natural  Science  Foundation  of  Shandong
Province  (Nos.  ZR2020JQ28  and  ZR2020KF016),  and  the  Pro-
gram of Qilu Young Scholars of Shandong University.

References 

 Yao P, Wu H Q, Gao B, et al. Fully hardware-implemented memris-
tor convolutional neural network. Nature, 2020, 577, 641

[1]

 Khwa W S, Akarvardar K, Chen Y S, et al. MLC PCM techniques to
improve nerual network inference retention time by 105X and re-
duce accuracy degradation by 10.8X. Proc IEEE Symp VLSI Techn-
ol, 2020, 1

[2]

 Zhang W Y, Wang S C, Li Y, et al. Few-shot graph learning with ro-
bust and energy-efficient memory-augmented graph neural net-
work (MAGNN) based on homogeneous computing-in-memory.
2022 IEEE  Symposium on VLSI  Technology and Circuits  (VLSI
Technology and Circuits), 2022, 224

[3]

 Kumar S, Wang X X, Strachan J P, et al. Dynamical memristors for
higher-complexity  neuromorphic  computing.  Nat  Rev  Mater,
2022, 7, 575

[4]

 Lu Y M, Li X, Yan B N, et al. In-memory realization of eligibility
traces based on conductance drift of phase change memory for
energy-efficient reinforcement learning.  Adv Mater,  2022,  34,
2107811

[5]

 Huang P, Zhou Z, Zhang Y, et al. Dual-configuration in-memory
computing bitcells using SiOx RRAM for binary neural networks.
APL Mater, 2019, 7, 081105

[6]

 Chang C C, Chen P C, Chou T, et al. Mitigating asymmetric nonlin-
ear weight update effects in hardware neural network based on
analog resistive synapse. IEEE J Emerg Sel Top Circuits Syst, 2018,
8, 116

[7]

 Ravsher T, Garbin D, Fantini A, et al. Enhanced performance and
low-power capability of SiGeAsSe-GeSbTe 1S1R phase-change
memory operated in bipolar  mode.  2022 IEEE Symposium on
VLSI  Technology and Circuits  (VLSI  Technology and Circuits),
2022, 312

[8]

 Ielmini D, Ghetti A, Spinelli A S, et al. A study of hot-hole injec-[9]

tion during programming drain disturb in flash memories. IEEE
Trans Electron Devices, 2006, 53, 668
 Wu W, Wu H Q, Gao B, et al. A methodology to improve linearity
of analog RRAM for neuromorphic computing. 2018 IEEE Sym-
posium on VLSI Technology, 2018, 103

[10]

 Wang Q W, Park Y, Lu W D. Device variation effects on neural net-
work inference accuracy in analog In-memory computing sys-
tems. Adv Intell Syst, 2022, 4, 2100199

[11]

 Ogawa S, Shiono N. Interface-trap generation induced by hot-
hole injection at the Si-SiO2 interface. Appl Phys Lett, 1992, 61,
807

[12]

 Choi W, Kwak M, Heo S, et al. Hardware neural network using hy-
brid synapses via transfer learning: WOx nano-resistors and TiOx

RRAM synapse for energy-efficient edge-AI sensor. 2021 IEEE In-
ternational Electron Devices Meeting (IEDM), 2021, 23.1. 1

[13]

 Ali  T,  Seidel K,  Kühnel K,  et al.  A novel dual ferroelectric layer
based  MFMFIS  FeFET  with  optimal  stack  tuning  toward  low
power and high-speed NVM for neuromorphic applications. 2020
IEEE Symposium on VLSI Technology, 2020, 1

[14]

 Lue H T, Hsu P K, Wei M L, et al. Optimal design methods to trans-
form 3D NAND flash into a high-density,  high-bandwidth and
low-power nonvolatile computing in memory (nvCIM) accelerat-
or for deep-learning neural networks (DNN). 2019 IEEE Interna-
tional Electron Devices Meeting (IEDM), 2020, 38.1.1

[15]

 Malavena G, Spinelli A S, Compagnoni C M. Implementing spike-
timing-dependent  plasticity  and  unsupervised  learning  in  a
mainstream NOR flash memory array.  2018 IEEE International
Electron Devices Meeting (IEDM), 2019, 2.3.1

[16]

 

 

Yang  Feng received  a  BEng  degree  from  the
School  of  Information  Science  and  Engineer-
ing (ISE),  Shandong University,  in  2021,  where
she  is  currently  pursuing  a  PhD  degree  with
the  School  of  Information  Science  and  Engi-
neering  (ISE),  Shandong  University.  Her
focuses  are  on  the  design  and  simulation  of
computing-in-memory circuits and systems.

 

 

Jiezhi  Chen received  a  PhD  degree  from  the
Department  of  Informatics  and  Electronics,
The  University  of  Tokyo,  in  2009.  In  2010,  he
joined the Research and Development Center,
Toshiba  Corporation.  He  is  currently  a  profes-
sor  with  the  School  of  Information  Science
and  Engineering,  Shandong  University,  China.
His research interests include the characteriza-
tion  and  process  engineering  of  nano-scale
transistors  and  non-volatile  memories,  with  a
main focus on reliability physics.

Journal of Semiconductors    doi: 10.1088/1674-4926/45/1/012301 5

 

 
Y Feng et al.: Optimized operation scheme of flash-memory-based neural network online training with ......

 

https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1038/s41578-022-00434-z
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1002/adma.202107811
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1063/1.5116863
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/JETCAS.2017.2771529
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/TED.2006.870280
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1109/VLSIT.2018.8510690
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1002/aisy.202100199
https://doi.org/10.1063/1.107751
https://doi.org/10.1063/1.107751
https://doi.org/10.1063/1.107751
https://doi.org/10.1063/1.107751
https://doi.org/10.1063/1.107751
https://doi.org/10.1063/1.107751
https://doi.org/10.1063/1.107751
https://doi.org/10.1063/1.107751
https://doi.org/10.1063/1.107751
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/IEDM19574.2021.9720604
https://doi.org/10.1109/VLSITechnology18217.2020.9265111
https://doi.org/10.1109/VLSITechnology18217.2020.9265111
https://doi.org/10.1109/VLSITechnology18217.2020.9265111
https://doi.org/10.1109/VLSITechnology18217.2020.9265111
https://doi.org/10.1109/VLSITechnology18217.2020.9265111
https://doi.org/10.1109/VLSITechnology18217.2020.9265111
https://doi.org/10.1109/VLSITechnology18217.2020.9265111
https://doi.org/10.1109/VLSITechnology18217.2020.9265111
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/IEDM.2018.8614561
https://doi.org/10.1109/IEDM.2018.8614561
https://doi.org/10.1109/IEDM.2018.8614561
https://doi.org/10.1109/IEDM.2018.8614561
https://doi.org/10.1109/IEDM.2018.8614561
https://doi.org/10.1109/IEDM.2018.8614561
https://doi.org/10.1109/IEDM.2018.8614561
https://doi.org/10.1109/IEDM.2018.8614561

	1 Introduction
	2 Background
	2.1 Flash-based CIM architecture
	2.2 Flash operation by CHEI and HHI
	2.3 ResNet50 and VGG16 neural networks

	3 Reliability analysis and discussion
	4 Performance in neural network
	5 Conclusion
	Acknowledgements
	References

